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NASA TT F-IO,080

TURBULENT BOUNDARY LAYER ON A FLAT PLATE IN AN *_
INCOMPRESSIBLE FLUID

G.S.Glushke

Analysis showing that the effective viscosity created by

Reynolds stresses dur_ug turbulent motion in the boundary

layer is a function of the turbulent Reynolds number and

only of the turbulent Reynolds number. This number com-

prises the total turbuJent energy, the scale of turbulence,

and molecular viscosity. This function is shown to be

universal for turbulent boundary-layer flows and to be in-

d_endent of the presence of a pressure gradient. An ana-

lytical relation between the effective viscosity and the

turbulent Reynolds number is derived from processed measure-

ments of the turbulence characteristics. With this relation,

it is possible to use, instead of six equations for the

second moments, only one equation for the total turbulent

energy. A system of differential equations consisting of

the Reynolds equation, the equation of total turbulent

energy, an empirical distribution of the turbulence scale,

and an empirical relation for the dissipation energy is

integrated on an electronic digital computer. The solution

obtained exhibits a laminar, a turbulent, and a transition

region. The beginning of the transition region and the

behavior of the solution in this region depend on the value

* Numbers in the margin indicate pagination in the original foreign text.
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of turbulent energy in the initial cross section. In the

laminar and turbulent regions, the solution is independent

of this value. The velocity distribution and distribution

of total turbulent energy are obtained, and a relation be-

tween the friction coefficient and Reynolds number is de-

rived. The results are compared with the e_qoeriment.

It is shown in this paper that the effective viscosity, arising as a conse-

quence of Reynolds stresses during turbulent motion in the boundary layer, is a

function only of the "Reynolds turbulence number" composed of tiletotal energy

of turbulence, the scale of turbulence, and molecular viscosity. With the

assumptions made here, this function is shown to be universal for turbulent

flows of the boundary-layer type and does not depend on the presence of a pres-

sure gradient. The specific type of dependence of the effective viscosity on

the Reynolds turbulence number is obtained by analysis of the measurements of

the turbulence characteristics.

The dependence found makes it possible to manage with one equation for the

total energy of turbulence, in pla_e of the six equations for second moments.

For the third moments entering the equation of the total energy of turbulence

and characterizingthe spatial diffusion of the energy of turbulence, in this

work, a_ in those of other authors, we introduce the "gradient concept" and

assume that the diffusion coefficient is a function only of the Reynolds turbu-

lence number. A comparative evaluation of the terms of the equation of total

energy of turbulence for the case of flow in boundary layers shows that the

terms containing the third moments are small in comparison with the principal

terms. Therefore, the diffusion coefficient of the total energy of turbulence

cannot be given exactly. Here, the dependence obtained from experiments on the

2
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attenuation of homogeneous turbulence is used for the terms expressing the

dissipation of energy.

The system of differentia! equations, consisting of Reynolds equations and

the equation for the total energy of turbulence, which is supplemented by the

empirical dependences mentioned above and by the empirical turbulence scale,

was integrated on an electronic digital computer for the particular case of a

flat plate.

It was found that three regions can be distinguished in the solution ob-

tained: laminar, transitional, and turbulent. The start of the transitional

region and the character of the behavior of the solution in this region depend

on the value of the turbulent energy at the initial cross section. In the

laminar and turb111entregions the solution does not depend on the value of the

turbulent energy at the initial cross section. This paper gives the velocity

distribution and the total turbulent energy distribution as well as the depend-

ences of the friction coefficient on the Reynolds number; the results are com-

pared with experimental data.

Symbols

v = kinematic viscosity

p = density

t = time

Us = components of the mean velocity vector (i, j, k = i, 2, 3)

P = mean pressure

xl = rectilinear rectangular coordinates (i = I, 2, 3)

6ij = Kronecker delta

ut = components of the velocity fluctuation vector (i = l, 2, 3)

3
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p = pressure fluctuation

R = Reynolds number

8 = boundary-layer thickness

= characteristic length of flow surface

U_ = velocity at edge of the boundary layer

e = dimensionless "turbulent viscosity"

_ = dynamic velocity

Tw = friction stress on flow surface

Cr = friction coefficient of plate

= dimensionless coordinate
/

X,

U_l Uoo6 2 I
R-- v ' nS-- _ . C!-pU_z I Jx w{x_)dxt .o

The xl and xs axes are directed parallel to the flow surface respectively

along and across the mean flow; the xz axis is perpendicular to the flow surface.

I. As is known [see, for example (Bibl.l)], the average values of the /I_

quantities characterizingthe flow (velocity vector components, pressure) in

turbulent flows of an incompressible fluid obey the Reynolds equations:

aUi 3 aUi iaP s 3 3
OsUi a (uiuk> _, OUk

o-r+ E u_ : _o,, + _ _ o4 E o,_ _, o,. - o. (l.l)k=l k_l k_t =

Upper-case letters designate average values, and lower-case letters denote

fluctuating values; < > signifies averaging. By averaging, we mean time-

averaging since stationary flows _lll be examined from now on.

From the Navier-Stokes equations we obtain, by well-known methods [see,

for example (Bibl.2, 3)], the equations for the components of the tensor of
I

turbulent s+ress entering eq.(1.1):

1966015623-005



Ot Jr"Z Uk <u_u1>
_t=l O'r------7"--+ Z (<u,uj) OU, + <u_ul>"WT,/--k=l

{Oui Ouj_, "_ lOUt Outx

+ _ _ --'_ o_----_+ <,,,.,,_uj>+ -( <p(8_u_+ 8jku,)> = o.k=l

(i,¢= t, 2, 3)

The mechanical meaning of the i_dividual terms i_Ieqs.(l.2) can best be

explained for i = j. In this case, the equations describe the beha,rlor of the

energy of fluctuations of an individual component of the velocity vector:

3 3

O,q\
O <el> 0 <ei> OUi t <p -_zi/ _j_k=l k --I

+>,, _. + <,,,,>+.y,k=l

(e i ui_ / 2 i _- 1, $, 31

The first two terms of eqs.(l.3) characterize the to;al time rate of change

of the energy. The third term characterizes the work of Reynolds stresses,

converting the energy of the mean flow to the fluctuation energy of a given

velocity component. The fourth term characterizes the process of fluctuation

energy transfer between the individual components of the velocity vector by

means of pressure fluctuations. The fifth term characterizes the spatial diffu-

sion of the fluctuation energy. Finally, the last term characterizes the dissi-

pation of the fluctuation energy.

We will examine the problem of a stationary plane turbulent boundary layer.

In this case, the partial derivatives from the average quantities with respect

to time and the coordinate Xs will be equal to zero. The velocity vector com-

ponent Us will also be identically equal to zero. As a consequence of this,

<_:us> and <uaus> do not enter into the equations for the remaining <t_uj>.

5
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Therefore, the equations for <u_us> and <uzus> will be discarded. In this case,

they can also be determined from the e_perimental data from which it is known

that, in a plane boundary layer, <ulus> = <uzus> = O.

The terms are estimated in eqs.(l.1) and (1.2). The square root of the

ratio of the boundary layer thickness to the characteristic length of the flow

surface is taken as a smallnessparameter. For a turbulent botundarylayer on a

flat plate, _e have 6/& = 0.37 R-°'_• lCnenR changes in the range from R = l_

to R = 107, the ratio (6/&)_2 changes from 20% to 12%_,i._., the quantity _

(8/_)_2 is approximately by one order smaller than unity. Therefore, in eqs.(l.l)

and (1.2) we discard the terms starting wish an order of smallness (6/_)_ .

This leaves only terms of the order of unity.

We will assume that in the turbulent boundary layer the inertia forces,

which are expressed by the left-hand side of eq.(1.1), are equal in order of

magnitude to the forces of viscous and turbulent stresses. Furthermo_-e,it is

known from the experimental data that in the case under consideration all <:u_uj>

are of the same order [except <ulus> and <u_us> which are equal to zero].

Hence, it follows that <ulu_> _ b¢_6/_and _ _ Us_8/&. As a result, eqs.(l.1)

take the usual form:

8Ul - 8UI I 8P Osl:l 0 <ulu,>

ou, o.. oP
o--V+ = o, o .

It follows from an estimate of the _erms in eqs.(l.2) that, in all equa-

tions, we can neglect terms expressing the total time rate of change and the

diffusion of the tensor components of turbulent stresses. Among the terms ex-

pressing the work of Re_1olds stresses, only the terms <ulna> _Ui/3x_ [in the

ec_ation for <u_>] and <u_> _Ui/_x_ [in the equation for <ulna>] are of the

6
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order of unity. Since we are examining a stationary case so that th_ tensor

components of the turbulent stresses do not increase in time, energy balance

should exist at each point. Therefore, in the equations for <u_> and <u:us>

the terms expressing the dissipation of the turbulent stress tensor should also

be of the order of unity. Since the dissipation occurs in small-scale fluctua-

tions which are isotropic, the dissipative terms in other equations should also

be of the order of unity. However, it is known from experimental data that

<u_> and <u_s>are of the same order as <u_> and <u_u_>. Con_._quently,the

energy source should be of the order of unity, which would maintain <u_> and

<u2_>at such a 1,_vel. The terms expressing energy transfer between components

can be the only terms causing energy fluctuations of <u_> and <_>, which can

be of the o_er of unity. Consequently, the system of equations (1.2) takes the

following form, in accordance with the above estimates and discussions:

$
0UI t / Ou,\ // 0u1\_

<.,u,> a_, p<..P_T_,)+ _ y' = o
8

<_p_,) + __ ([_,. = ok-1

, (1.5)
| / 8us\ /I _us \2\

_,pw;,) + _Y, = o
,I

<u?>au, t <p(O., a.,_\ /o., a.,.._ = ,

2. Proceeding from the assumption that the portion of energy transfsrred

by pressure fluctuations from <_> to <u_> is proportional to their difference,

Rotta (Bibl.2) obtained the following formula [see also (Bibl.3)]:

+ ,
Here L is the scale of turbulence, K is a certain constant, and • is the ___

energy of turbulence.

7
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For terms expressing the dissipation of the components of the tensor of

turbulent stresses, Rotta irtthe same work (Bibl.2) on the basis of experimental

data proposed a formula similar to the following:

8

/ a., a._,_ /<_'"P ..t. ViL •

where C and _ are constants. Let us substitute eqs.(2.1) and (2.2) into the

system (1.5); after easy calculations we obtain

O_lus_ rm

v(OUl/ax,) -- (r + _l)(r + 7)ar

Here, r is the Reynolds number of turbulence, while _, _, V are constants

expressed by K, C, and _.

/o

% I

0 02 0.6 06

_&g.1

Thus, in a turbulent boundary layer the C4_,:(_,1210_LIess "turbulent viscosity"

is a function only of the Reynolds number of _uvbulence. However, eqs.(2.1)

and (2.2) were obtained under rather gross assumptions, so that eq.(2.3) indi-

cates only the possibility of the existence of such a regularity and is in need

of experimental confirmations.

3. To determine the dependence e(r) from the experimental data, we need

measure all the quantities entering into the determination of ¢ and r (i.e.,

<u_>, <u_>, <_>, <ulu_>, L, _U1/_x_, _) at each point of the turbulent boundary

8
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la_*eror other turbulent flow in which the estimates which led to systems of

equations (1._) and (1.5) hold true (for example, a plane wake, a plane flow: a

plane c annel). Only in this case can we obtain the dependence ¢(r). Unfortu-

nately, there are very few works in the literature in which all of the above

quantities have been measured. In most works, only some of these quantities

have been measured. A number of papers give dar_ n the measureme:ts of some

group of characteristics of turbulence without _n accurate description of the r

Pexperimental conditions Cfor exac_le, the distribution of _u_ >/U_ with respect

to xa/8, without an indication of thevalues of U_, 8, and _ or RS]_ This cir-

cumstance also makes it impossible to obtain the dependence ¢(r) from these ex-

perimental data.

There are especially few data suitable for analysis of the measurements of

the turbulence scale. To obtain the dependence e(r), we must accept some one

definition of the turbulence scale for all the experimental data.

In the present work, we have accepted the following def_5 tion of the turbu-

lence scsle: The scale L is equal to half the distance s between points at

which the cross correlation function

<,,,(x,. =,+ s_),,,(x,, =,-- s_)>
R, (s. x,. =,)-- y <,.,.(:,. =+ ,_)><,,I'(=,.=. -- ,/2)>

vanishes with the prescribed accuracy. This meaning of t_e scale is ascribed

to point (x:, xa) lying in the middle of the segment connecting these points.

Figure 1 shows a typical shape of the function

R,,' (s,=,,=,) - <u,(_,,=,)., (=,,r- + ,,b
Y'<.,' (=_,r,)><.,, (=,.=.+ s)>

taken from another paper (Bibl._). It is evident that R_:(s) and _: (s) vanish

_ith the prescribed accuracy at the same values of s = 2L. The experimental

9
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data (Bibl./_)on measurements of R_I (s, xl, x_) in the boundary layer on a flat

plate were analyzed, to obtain the distribution of the scale of turbulence. In

/
0 06 08 z2

Fig.2

this case, the point to which we must ascribe the value of the turbulence /17

scale, equal to L, has coordinates (xl, xm + L) if s > O, or (xl, x_ - L) if

s < O. The results of such an analysis are given in Fig.2. The obtained

I °° -. b.

i| i. ., -o -r, •.•e_• _°

j ee._ •. _ . _ __

Fig.3

experimental curve was approximated by a broken line. In the present work, it

is assumed that the obtained distribution of the turbulence scale holds true at

any place of the boundary layer on a flat plate.

The distribution of the quantity v¢/tk_6 across the boundary layer of a flat

plate, calculated from the data of Klebanov and Townsend, is given in a mono-

graph (Bibl.3). It was found that, in the range of 3 x lO4 < R8 < 8 x lO4,

_/t_x_8 is a function only of x_6. The same monograph gives Klebanov's experi-

mental data on the distribution of _nA_>,<u_>, <_> across the boundary layer

of a flat plate for R8 = 8 × I04 (u./U_ = 0.037). Using the distribution of

lO
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the turbulence scale across the boundary layer shown in Fig.2, we can calculate mE"

r ard ¢. The results of this calculation are shown in Fig.3 (black dots).

'°J !

# _I _/

Fig._

The experimental data on the distribution of 2e/_ across the boundary

layer for R8 = 7.3 x lO4 are given elsewhere (Bibl.5). These data were also

analyzed and are plotted in Fig.3 (points given as circles).

In this range of r numbers, the dependence e(r) was approximated by a

linear function: ¢ = _r.

The experimental data on the distributions of the components of the turbu-

lent stress tensors, mean velocities, and turbulence scale in the self-similar

part of a plane wake behind a cylinder given elsewhere (Bibl.6) were also ana-

lyzed to obtain the dependence ¢(r). The results of this analysis are shown in

Fig._. In this range of r numbers, the function ¢(r) is satisfactorily approxi-

mated by a semicubical parabola: ¢ = _rS/ro. However, Townsend (Bibl.6) gives

data only for the distribution of the integral turbulence scales. We can con-

-lude from these data that the turbulence scale, in the sense of the definition

accepted in this work, is constant across the wake and no conclusions can be

drawn concerning the magnitude of the scale. Therefore, the scele for r in

Fig.A is conditional.

ll
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/_.An analysis of the experimental data on the distribution of the com-

ponents of the Reynolds stress tensor, the mean velocities, and the turbulence

scale made it possible to construct th_ dependence of "turbulent viscosity" on

the Reynolds number of turbulence. This dependence is well approximated by the

following piecewise-smooth function

e -- H(r) cxr

|r /ro O<r /ro<0.75

_q(r) =l[_/'°--(" / r.-- 0.75)'0.75_;,/ro< ,.Z5 (', .!)t._qr/r,<oo .

5. Adding of all equations in the system (1.3) will yield the equation /l_

for the total turbulent energy:

3 3
Oe Oe OUi

_r+ Zv,_; + Z <_,u,>N +k----I i. k----I

a O _v Oe i+ E N _4;+ "'' 8'_7P+ +" y' \_-;I/=°"k=l 1"= t, k=l

As a consequence of the continuity equation for velocity fluctuations,

we have
3

o.,> =o •
i-----t

If, in eq.(5.1), we make estimates of the terms and discard small terms

beginning with the order of smallness (6/t)_, we obtain the follo_dng equation:

3

• ou_ y, /(o=,_%
-- <,tu,_ _ + ,__._=\_- .//= 0 . (5.2)

If, in eq.(5.2), we add a term expressing the diffusion of turbulent

energy in the direction x_ and having an order of smallness of (8/&)_2, as well

as convective terzs having an order of smallness of (8/&), then we obtain an

ec_ation analogous to the equation of heat transfer in a compressible laminar

bmmdary layer:

12
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3

au,
-- (UlU_)a.,-,-- v •

i.

The addition of these terms will not change the result, since the added

terms are small in comparJ son with the principal terms. As a result, we obtain

a system of equations for which methods of numerical integration have been

worked out [see, for example, (Biol.7)].

In eq.(5.3), the term expressing the work of the Reynolds stresses is re-

placed by its e>press±on in terms of "turbulent viscosity"

au,= :au,--<u,u,.) _ _-_,1 .

_or the term e:_fessing the dissipation of turbulent energy, we can obtain

the following expression, after sunmLing eq.(2.2) with respect to all i = j

3

{ au_,2. •
i, k:l

As already indicated above, e .(o.2_q ,~ j -gas obtained under rather gross as-

sumptions. It is known from experimental da_a (Bibl.8) that the energy dissipa-

tion at homogeneous turbulence and at large Reynolds numb-.'s is expressed by

the formula:
3

4/[ 0u t _a,,_ e,/, _ (A=const) . ( 5.6)
I. kfl

It is also known that at small Reynolds numbers the expression for the

turbulent energy dissipation deviates from this law; the character of this

deviation has been little studied. We can assume that, at inhomogeneous turbu-

lence as it occurs in the boundary layer, the expression for the turbulent /19

energy dissipation can be written in the following manner:

13
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3

. @u t -_

where D(r) is a certain function which, when r _ _, asymptotically approaches

a certain straight line passing through the origin of the coordinates. Tt

follows from the experimental data on the attenuation of turbulence at the final

period of degeneration (Bibl.8) that for r _ 0

3

i, k=l

Hence it follows that D(r) _ 1 when r - 0. However, the character of the

behavior of D(r) for intermediate values of r has not been studied. Further-

more, caution is recommended in transferring the results of experiments at

homogeneous turbulence to turbulent flows with a mean velocity gradient. Un-

fortunately, to our knowledge there are no experimental data available, from

which D(r) could be determined for the case of turbulent flows with a mean ve-

locity gradient. Therefore, we assume here that

D (r) = I + e (.,) (5.8)

where _ is a certain constant factor.

The quantity D can be treated as some "intravortex" "turbulent vlscosity"

caused by small-scale fluctuations. This interpretation permits the assumption

that the term expressing diffusion of the turbulent energy can be expressed in

the following manner:

Thus, the following system of differential equations is obtained for the

turbulent boundary layer:

au, au, , a_ _ &mau,) au, au,_ o ; (_.l'o)

]h
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Oe ae a (vD ___er=) + v( MUI-_i_+ U=_y_,_ -- .

The system (5.10) is closed by the functions

M-_ | +z(r), D= |-Fe(xr), mlS=_(x, lS) • (5.11)

Here _(x_/8) and ¢(r) are the empirical functions obtained above in Sec-

tions 3 and &, where the function _(xm/8), generally speaking, is valid only

for the case of a boundary layer on a flat plate.

6. For the case of a flat plate, the system of equations (5.10), (5.11)

was integrated by the net-point method analogous to that described elsewhere

(Bibl.7). The boundary conditions for x_ = 0 were the usual conditions of

attachment Ut = U_ = e = O. For xm _ =, Uz _ U_ we have e _ O. The integra-

tion was started from a certain point of the flat plate, corresponding to a

Reynolds number of the order of lO4 plotted for the distance from the leading

edge of the plate. Here, it was assumed that the boundary layer was still

laminar. Therefore, as the initial mean velocity profile Ut(xlo, x_) we took

the Blasius profile. It was assumed that, in the initial cross section of ___

the boundary layer, small disturbances were present whose energy was distributed

across the layer according to the following law:

e (x=) = [_ (x=)]=, _ (x=) =- V_m (x=/ x=,.) exp {t/=[1 - (_ [ x,.)s]} .

The function _(xz) for xz = xz, has a maximum, moreover *(xz=) = _,. Here,

the obtained distribution of the turbulence energy in the initial cross section

satisfies the boundary conditions.

By means of the continuity equation, the first equation of the system (5.10)

is transformed into
_s

. au, ou,_'ou, o au,_ r (6.Z)u, _- _ .__ ,_._= _ (_,M.-_-/ ..
@

15
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The field of integration is covered by a uniform net with intervals of

Axl = hl and Ax_ = h_. The partial derivatives in eq.(6.1) are replaced h6rthe

finite difference expressions

at/, .._! (,,_. _ ,,,,,,), u,= ,/,(._" + ,,:,"1)_Xt "" hi

aUl _ IA tum+l ,m ¼�-- O) _n ��--"_-1 )]
OX| 2lll iv t n+l _ t'n-I I -1" (| m

0 ( 0_1_,..., 0 ill.fro+, h .m_-I . m �t�_tcm+Vt.m',.l _re ���I-o ,w,,+'/,,, ,- _,,,,,b_M,L+,_, ,,__,)1

-F h:---'T-"t", n+'i,_'n+l (unm--

nm+% t _.¢m+'/, _sm+'h ..,..,11. I ,_ m+% --m+th_
n+'h _ l/s _" n+l "at-'_lfnm+V'), ._n_j/: .,,.. /a_,,,n .If- lt/n_l I

Unm -----UI (mh,, nh,), Mn m+'l' -..---M [(m --[-1/, h,, nhsl, 0 _< O_< t •

The integral in eq.(6.1) is replaced by the expression from the formula

for a trapezoid:

_''-f L _, + 2 y, h, + h_ "
0 /¢=1

These relationships approximate the terms entering into eq.(6.i) at the

point xl = (m + ½)hl, x_ = n_ with an accuracy of O(h_) + O(hz). If we substi-

tute these expressions into eq.(6.1), we obtain the following equation:

n

m �T�m_l
-- °_,tl'u,l -_- _t'tn l_]'l --_n Z Ukm+l- r.,,._, =e,,. (6.2)

k'l

Here, _, BD, _n, _, 8_ are expressed in terms of

ukm (k -- t, 2,. ..., n -t- t), u m_l , M, m ��)h�”�(s= n -- t, n, n -F 1)

and also M_+I/_ = },(_+_z ), where

r, m+'l,= v-t V'(e,"" + ,,_)/2 8,,,+,i,¢_ (sh, 15.,+,/,)
8m+,/,= 0.5 [6 ([m "Jr"t] h_)+ 8 (mhdl .

In the same manner, we can obtain the difference equation approximating

with the same accuracy the differential equation of the energy of turbulence at

the point (xl = (m + _)hl, xm = nh2)

16
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• rn+l ..L- _ '- m+| _ ,_m+l _ _n"
-- an en+l ---n_n "-- In on-1 ' (6-3)

In the expression for the coefficients of eqs.(6.2) and (6.3)• the quanti-

Am+l _I+ 1 ^l+l

m+1 m+1 _+_, _,+I and enter as sums of the type (u_+I +ties l_n+l • tln , , _u • _n-I

+ u_); therefore, for small intervals of hl the values of these sums and thus

also the coefficients of eqs.(6.2) and (6.3) change little if we replace u_+I ,

e_+I by u_, e_. This permits calculating the coefficients of eqs.(6.2) in first

approximation, assuming that u_+I = u_. In this case, we obtain a syste_ of /21

linear algebraic equations which is solved by the method of successive elimina-

. n+l
tion of unknowns, using the boundary condition uo = O. Here, the system of

equations (6.1),for various n = i, 2, ..., N, reduces to the form

._+1 _, m+l __ ,_. (n = _, 2,. A'V) (6._)

The edge of the boundary layer is found from two conditions:

U, lx,_s = Uoo, (OUxI ax,)l_=s = 0 . (6 • 5 )

Condition (6.5) with consideration of eq.(6._) was transformed into

= (I - (6.6)"_+I Uoo --AN) _ el •

From the last condition in the system (6.6)• we determined the number of

the point N at which 8U:/Sxz vanishes with the prescribed accuracy. We then

I

Fig.5

determined all u_+z in sequence, after which the values of _,,+zo, _mre determined

in the same manner. In this case• the values of u_+I obtained in the first
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approximation were sDbstituted into the formulas of the coefficients of

eqs.(6.3).

_ m+l _m+l

The calculation was then repeated for uk , ek of the first approximation

m+l m+l

to find the values of uk , ek of the second approximation, and so forth. The

process of iteration continued until the thickness of the momentum loss
co

stopped changing from iteration to iteration with a certain accuracy _.

The boundary-layer thickness in each iteration, needed for the calculation

of r, was determined from the condition UI = 0.99 U_ since the distribution of

the scale across the boundary layer shown in Fig.2 was obtained precisely with

such a determination of the boundary-layer thickness.
t

Thus, having determined the distribution of the velocity UI s.ndof the

turbulent energy for a certain x_ = mohl, we can calculat_ the distribution

U_ ([mo + 1] h_, kh_), e(Cmo + 1] hl, kh_), and so forth. The number of

points N across the layer increases with an increase in boundary-layer thick-

ness. At the end of the calculation for xl corresponding to a Reynolds number

of R - 3.5 x l0s, we have N u 700.

Before integrating the system of equations (5.10), (5.11), the boundary

and initial conditions were reduced to a dimensionless form. The quantities ¢I

and c_ were equal respectively to 10-3 _nd lO"s• To find the friction coeffi-

cient of the plate Ct, we used the integral relation integrated along the plate.

The momentum loss thickness entering into this relation was determined from the

resultant distribution UI. The value of _U:/_xs for xs = O, needed for the

calculation of u_, was determined from the values of UI at the points xs = O,

h_, 2h_. In this case we used the fact that, at xs = O, we have _U1/_x_ - 0

18
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on the plate.

To define the accuracy of the calculations, certain computations were

checked with half-intervals. It was found that the values of Ct in the calcula-

tions agreed with an accuracy of 1.5 - 2_6.

As mentioned above, as a consequence of the large scattering of the experi-

mental data, the values of the constants _, ro, C, _ and the function _(x2/8)

could not be determined with sufficient accuracy. Therefore, a series of calcu-

lations was checked to select the values of the constants and the function

(o(x_/8). The constants varied within the scattering of the experimental data.

For each variant of the values of the constants, we calculated the flow in the

boundary layer of a flat plate. The results of the calculation were compared

with the experimental data obtained for the velocity profiles, energy of turbu-

lence, and dependence of the coefficient of friction on the Reynolds number.

As a result of this series, we selected values of the constants which simultane-

ously gave satisfactory agreement between the indicated calculated functional

dependences and the experimental. The follo._ingvalues of the constants were

selected: _ = 0.2, ro = llO, C = 3.93, x = 0.L. The function _(xz/8) is shown

in Fig.2 as a broken line.

With the selected values of the constants we carried out a series of /22

calculations of flow in the boundary layer of a flat plate for various values

Of e, lying in the range

o._ol_ Wa_/u®< ol

Figure 5 shows the mean velocity distributions obtaine_ as a result of

integration of the system of equations (5.10), (5.11) for _,/U_ = 0.05, and

Fig.6 gives the co'.respondingenergetic velocity of turbul_uce J'_/U_. The

numerals i and 2 in the diagrams denote the distributions obtained at distances
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xl from the leading edge of the plate corresponding to Reynolds numbers of

1.25 x 104 and ;_.82× 1O4. At these Reynolds numbers, the character of the

OO8

0 9.4, _0 /.Z :_

Fig.6

mean velocity distribution is still very close to laminar, and the maximal

value of the energetic velocity ot turbulence gradually increases. The numer-

als 3, _, 5 in the diagrams correspond to Reynolds numbers of 1.22 x i06,

VY/U.

0M

0 0._ 08 I._

Fig.?

i.07 × i0s, and 9.78 _' lOs • In this region a gradual deviation of the character

of the distribution of mean velocity from laminar and an approach to turbulent

is noted.

The energetic velocity of turbulence at first increases markedly and then

begins to diminish, more rapidly in the outer part of the boundary layer owing

to the decrease in the m6an velocity gradient in this portion. The distribution

of the energetic velocity of turbulence shows a characteristicmaximum near the

wall which becomes ever sharper. The numerals 6 and 7 correspond to Reynolds

2O
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numbers of 2.12 × l0s and 3.51 x los. The distribution of the mean and ener-

getic velocities of turbulence in this range depends weakly on the Reynolds

number. For a comparison, Fig.7 shows the distribution of the energetic velocity

I

_P,r a , • . -

Fig •8

of turbulence at a Reynolds number of 4.2 × los obtained from an analysis of the

experimental data cited elsewhere (Bibl.3). The comparison of Figs.6 and 7 can

, -- .."

m .,_,mO

0 /0 lO 10 19r

Fig.9

be only qualitative since the last of the cur_es in Fig.6 was obtained at a

Reynolds number of 3.51 × 10s • In addition, the system of equations (5.10),

(5.11) was integrated at boundary conditions for a turbulent energy • - 0 when

x_ - -, whereas the experimental distribution of _he energetic velocity of turbu-

lence was obtained in the presence of turbulent perturbations in the _uter flew.

The laminar, transitional, and turbulent regions of the solution of the

system of equations (5.10), (5.11 ) can be traced mere distinctly by examining
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the obtained dependences of the friction coefficient Ct on the Reynolds number

R = U._xl/_,which are shown in Fig.8. The experimental data of v{r'ious authors,

cited in another paper (Bibl.1), are marked by dots in Fig.8. The dashed curve

iIo._ in Fig.8 corresponds to the dependence on the theory of a laminary boundary

layer. The dot-dash curve No.7 corresponds to the experimental dependence Ct =

= 0.455 (log R)-as8 for a turbulent boundary layer. The solid curves Nos.1 - 6

correspond to solutions of the system (5.1C), (5.11), obtained at various ___

values of the quantity J-_,/U_ given in the initial cross section. The curves

• 0 _/8 t,o

-'f
8g

Fig. I0

Nos.5 and 6 in Fig.8 correspond to large values of /_/U_ in the initial cross

section (0.05 and O.1, respective.!y). At large values of e, in the initial

cross section the dependence Ct(R) rapidly deviates from laminar. However, the

end of the transition zone for all values of e, remains the same. Curves Nos.1,

2, 3, & correspond to small values of/_,/U_ (O.OOO1, 0.0005, O.OO1, 0.005). At

these values of e,, the start of the transition zone shifts to the range of

large values of R and the slope of the curve changes somewhat: A minimum ap-

pears on the curve Ct(R).

At numbers R > $ x l0s the dependences Ct (R) for all values of e. merge

into one, enter the domain of the scattering of the test points, and proceed

almost parallel to curve No.7. The distribution of the mean velocity, shown
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in Fig.5, still does not give a complete idea as to the conformity of the solu-

tions of the system of equations (5.10), (5.11) with the experimental data in

the turbulent region of the solution. Therefore, the curves Nos.5, _, 7 in

Fig.5 and the distributionof the mean velocity obtained for R = 3.26 x lO6 are

plotted in Fig.9 as a function of UI/_ = f(_) (_ = u_:_/v). The curve No.5 in

Fig.9 corl-espondsto the dependence UI/L4_= _ and the curve No.6 to UI/_: --

= 4.9 + 5.6 log 4. The experimental data of various authors (Bibl.9) are shown

as dots in Fig.9. The solid curves Nos.1, 2, _ correspond to the distributions

5, 6, 7 in Fig.5j while the curve No.3 corresponds to R = 3.26 x l0s. For

log _ < 2.5, all distributions of the mean velocity, in these variables, yield

one curve which proceeds in the domain of scattering of the test points. The

curves stratify in the outer part of the boundary layer, deviating upward,

which corresponds to the ideas developed elsewhere (Bibl.9). Figure lO shows

the same mean velocity distribution as in _-g.9, in the form of the dependence

6UI = (UI - U_)/u_ on x_/6. This dependence characterizes the velocity dis-

tribution in the outer part of the boundary layer.
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